
Visual Informatics 2 (2018) 136–146

Contents lists available at ScienceDirect

Visual Informatics

journal homepage: www.elsevier.com/locate/visinf

ECharts: A declarative framework for rapid construction of web-based
visualization✩

Deqing Li a, Honghui Mei b, Yi Shen a, Shuang Su a, Wenli Zhang a, Junting Wang a,
Ming Zu a, Wei Chen b,*
a Baidu Inc., China
b State Key Lab of CAD&CG, Zhejiang University, China

a r t i c l e i n f o

Article history:
Received 6 March 2018
Received in revised form 24 April 2018
Accepted 26 April 2018
Available online 17 May 2018

MSC:
00-01
99-00

Keywords:
Information visualization
Web-based visualization

a b s t r a c t

While there have been a dozen of authoring systems and programming toolkits for visual design and
development, users who do not have programming skills, such as data analysts or interface designers,
still may feel cumbersome to efficiently implement a web-based visualization.

In this paper, we present ECharts, an open-sourced, web-based, cross-platform framework that sup-
ports the rapid construction of interactive visualization. The motivation is driven by three goals: easy-to-
use, rich built-in interactions, and high performance. The kernel of ECharts is a suite of declarative visual
design language that customizes built-in chart types. The underlying streaming architecture, together
with a high-performance graphics renderer based on HTML5 canvas, enables the high expandability and
performance of ECharts.We report the design, implementation, and applications of EChartswith a diverse
variety of examples. We compare the utility and performance of ECharts with C3.js, HighCharts, and
Chart.js. Results of the experiments demonstrate the efficiency and scalability of our framework. Since
the first release in June 2013, ECharts has iterated 63 versions, and attracted over 22,000 star counts and
over 1700 related projects in the GitHub. ECharts is regarded as a leading visualization development tool
in the world, and ranks the third in the GitHub visualization tab.

© 2018 Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

With the boosting of data, there is a dire demand on presenting
and analyzing the data (Wang et al., 2016), eliciting the rapid
construction tools of data visualization. While there have been a
dozen of authoring systems and programming toolkits for visual
design and development (Mei et al., 2018), it is still cumbersome
for users, such as data analysts or interface designers, to rapidly
implement a web-based and interactive visualization (Grammel
et al., 2010).

✩ Wei Chen is supported by National 973 Program of China (2015CB352503),
National Natural Science Foundation of China (61772456, 61761136020).

* Corresponding author.
E-mail addresses: lideqing@baidu.com (D. Li), meihonghui@zju.edu.cn

(H. Mei), shenyi01@baidu.com (Y. Shen), sushuang@baidu.com (S. Su),
zhangwenli01@baidu.com (W. Zhang), wangjunting@baidu.com (J. Wang),
zuming@baidu.com (M. Zu), chenwei@cad.zju.edu.cn (W. Chen).

Peer review under responsibility of Zhejiang University and Zhejiang
University Press.

A recent trend is to enable visualization construction in graph-
ical user interfaces (GUI), without textual programming (Satya-
narayan and Heer, 2014). Typically, these tools lack of expressive-
ness, especially in specifying interactions.Meanwhile, the design of
graph grammar (Ichikawa et al., 2013) is essential for navigating
the design space (e.g., Lyra (Satyanarayan and Heer, 2014) is built
upon the visualization grammar Vega (Satyanarayan et al., 2016)).

Declarative languages such as D3.js (Bostock et al., 2011) and
Vega (Satyanarayan et al., 2016) are popular tools for building
visualizations. With the encapsulation of underlying data trans-
formations and control flow exposed to users, these declarative
languages allow users to focus on the visual design. However,
users have to be very skilled at web development. For example,
D3.js requires users to be familiar with HTML, CSS, SVG and DOM.
Similarly, Vega requires users to master a new set of graphics
syntaxes. These requirements make the development non-trivial.

We argue that the flexibility and complexity of visual de-
sign should not be limited by the requirement on programming
skills (Heer et al., 2008). The essential motivation of this work
is to fill this gap through a declarative object option and com-
posable visualization components, which are modeled with the
user-configurable declarative object option. When users create

https://doi.org/10.1016/j.visinf.2018.04.011
2468-502X/© 2018 Published by Elsevier B.V. on behalf of Zhejiang University and Zhejiang University Press. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.visinf.2018.04.011
http://www.elsevier.com/locate/visinf
http://www.elsevier.com/locate/visinf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lideqing@baidu.com
mailto:meihonghui@zju.edu.cn
mailto:shenyi01@baidu.com
mailto:sushuang@baidu.com
mailto:zhangwenli01@baidu.com
mailto:wangjunting@baidu.com
mailto:zuming@baidu.com
mailto:chenwei@cad.zju.edu.cn
https://doi.org/10.1016/j.visinf.2018.04.011
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146 137

Fig. 1. Examples of ECharts chart types. From top to down, left to right: scatterplot, line chart, candle-stick charts, geomap, radar chart, node-link graph, heatmap, tree
diagram, sankey diagram, parallel coordinates, gauge chart, treemap.

visualizations, they do not have to be proficient in web-relevant
programming. Instead, they only need to take a few minutes to be
familiar with the provided visual components, and configure the
components by specifying data, visual encoding, annotation and
visual style.

Here we contribute ECharts, an easy-to-use framework to con-
struct interactive visualization. The main contribution confirm to
three goals.

Easy-to-use. There are some difficulties for users to learn the
visual representations if a declarative language is employed. It is
desirable to allow users to focus on the design of the visualization
rather than on the use of some tools.

Rich built-in interactions. Efficient data exploration and anal-
ysis demand a wealth of configurable interactions. ECharts designs
and implements rich built-in interactions that are attached to each
chart type, minimizing the requirement of customization of user.

High performance. By introducing a streaming system archi-
tecture and incremental rendering mode, high performance is
achievedwith ECharts, evenwhen handlingmillions of data points.

2. Related work

2.1. Grammars of visualization

Charting tools such as Excel (Microsoft Excel, 2017) and
ManyEyes (Viegas et al., 2007) support rapid generation of charts
by selecting appropriate forms from predefined visual templates.
One main drawback of this scheme is that the expressiveness of
visualization is fully bound by the provided templates.

Wilkinson (Wilkinson, 2005) introduces The Grammar of Graph-
ics for a more wide range of graphical specification and ‘‘shun chart
typology’’. It has far-reaching influence that formal languages are
designed to describe the rules of generating graphics. Following
this idea, many softwares and frameworks are implemented to
bringmore customization for users, such as Tableau (Tableau soft-
ware, 2017) (formerly Polaris (Stolte et al., 2002)), ggplot2 (Wick-
ham, 2009, 2010), and ggivs (ggvis 0.4 overview, 2017). Some

visualization frameworks abstract low-level graphics drawing to
achievemore concise specification, such as InfoVis Toolkit (Fekete,
2004), Improvise (Weaver, 2004), prefuse (Heer et al., 2005), and
Flare (Flare, 2017). In these frameworks, inheritable visualization
widgets or composable operators are introduced to ease the users’
burden. On the other side, those declarative, domain specific lan-
guages (DSL) for information visualization, including ProtoVis (Bo-
stock and Heer, 2009; Heer and Bostock, 2010), D3.js (Bostock et
al., 2011), and Vega (Satyanarayan et al., 2016), allow users to
specify visualizations by directly mapping data to visual elements
without computational details. Based on this, Vega-lite (Satya-
narayan et al., 2017) abstracts more over data models, graphical
marks, visual encodings and other detailed specifications. Such a
high-level abstraction enables rapid construction of visual forms
by leveraging partial specification that omits low-level details and
resolves ambiguities with default values.

However, complex visual design always stands opposite to sim-
plicity and efficiency. The design of ECharts seeks to achieve a good
balance between rapid construction and expressive visual design.

2.2. Graphics libraries

With the drastic development of web technology, such as Cas-
cading Style Sheets (CSS), Java applets, JavaScripts, and AJAX, an
increasing number of applications are deployed throughweb sites.
For visualization tools, web-based approaches provide a simple
solution to support cross-platform deployment and enable easy
sharing and communication between collaborators and audiences.
These web tools make users focus on core issues (Mwalongo et al.,
2016) without maintenance.

Early construction tools for web-based visualization utilize Java
and Flash. Processing (Processing, 2017; Reas and Fry, 2003, 2005)
provides support of Java applet in its first edition. Flare (Flare,
2017) is an ActionScript library for creating visualizations that
runs in the Adobe Flash Player. Later, visualization construction
tools turn to use JavaScript and Scalable Vector Graphics (SVG),
including Raphaël (Raphaël—JavaScript Library, 2017), JavaScript



138 D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146

InfoVis Toolkit (JIT) (JavaScript InfoVis Toolkit, 2017), ProtoVis
and D3.js. Essentially, SVG can produce the best quality of 2D
drawings, and JavaScript provides flexible and easy-to-use callback
of user input events received by DOM elements when specifying
user interactions.

Despite its convenience, using SVG has a low performance be-
cause the DOM structures of all SVG elements and corresponding
styles and events need to be maintained in the web browser. An
alternative scheme is to utilize HTML5 canvas for 2D drawing. For
instance, using canvas in Vega (Satyanarayan et al., 2016) achieves
a 2× to 4× performance speedup over SVG. Other tools such as
iVisDesigner (Ren et al., 2014), iVolVER (Méndez et al., 2016)
and Data-Driven Guides (Kim et al., 2017) employ canvas for high
performance. However, as interaction specification for individual
graphical objects is not natively supported by HTML5 canvas, tools
using canvas must design an own event handling mechanism.

ECharts implements a 2D vector drawing library named ZRen-
der, which supports display of visual forms in HTML5 canvas and
manages graphic elements, rendering as well as events. Details of
ZRender can be found in Section 5.2.

2.3. Customization of visual design

Themost popular web-based visualization design engine, D3.js,
fully exploits the capability of web presentation by directing link
data to native web presentation, i.e., SVG. This leads to a high
expressiveness. However, users may still feel cumbersome when
a visual design contains complex visual mappings to the ‘‘d’’ at-
tribute of SVG path elements. For that, D3.js provides modules to
encapsulate common visual tasks including shapes, scales, layouts,
and interactions. This provides a flexible choice subject to users’
expertise, but still causes confusion when high-level and low-
level declarations are mixed. Vega overcomes this problem by
modeling complex forms as the combination of basic shapes that
are arranged by predefined layouts.

Recently proposed Data-Driven Guides (DDG) (Kim et al., 2017)
supports convenient creation of charts and flexible visual design
bymeans of a data guidemechanism. The guides are simple shapes
with datamapped to one of their attributes, for example, a series of
parallel lines whose length is bound to one of the data attributes.
Based on such guides, designers can then draw SVG shapes on the
top of data guides.

To provide flexibility while preserving simplicity, ECharts pro-
vides a special component series which allows users to modify a
predefined chart by changing its rendering process.

One of the most complex tasks in creating visualization is to
specify user interactions. One common solution is to attach event
listeners. Event listeners are callback functions that are invoked
when the specified events occur and react to user inputs. Based
on this, D3.js introduces event handlers called behaviors for the
reuse of interaction techniques. In Vega, events are extracted from
the input stream as signals and trigger predicates which can af-
fect visual mappings. On the other hand, a reactive programming
method (Satyanarayan et al., 2014) avoids the dreaded ‘‘callback
hell’’ but is hard for novices to design. Likewise, Vega-Lite allows
users to simply define a new interaction by transforming prede-
fined ones. However, only the selection operation is supported by
Vega-Lite.

In ECharts, rich interactions are automatically attached to gen-
erated charts, and new interactions can still be specified by means
of an easy-to-use event system.

3. Declarative visualization design

ECharts employs an all-in-one JSON format option to declare
the components, styles, data and interactions, resulting in a logi-
cless and stateless mode. The main advantage of JSON format lies
in that it is safe to store, transmit and execute, and is easy to do
further validation.

Following the conventions of well-known tools like Microsoft
Excel, ECharts uses series to abstract a group of graphic elements
that are mapped and encoded from data. For example, all lines or
bars in a cartesian coordinate system form a series. Similarly, pie
chart, treemap, graph or other chart types can be abstracted as a
series. In other words, a series is an instance of a type of chart.
Besides, ECharts uses component to name the functional unit like
data zooming, visual encoding and toolbox.

ECharts provides a method setOption to create or update the
components and series from the accepted option. If the setOption
is to update the data, ECharts employs a key-based diff algorithm
to find the difference of data and use proper transitions to display
it.

3.1. Declarative options

The declarative option is a hierarchical JSON object. On the top
level, all components, series and global settings are declared. In
particular, global settings, such as color palette, font and anima-
tion, are universal settings that are posed on different series and
components. ECharts checks whether the key in the top level is
registered as a component, then creates all components. Otherwise
the values are set as global settings.

Components like legend, tooltip, brushing, visualMap etc., are
all optional. Different components can be composed for different
visualization purposes.

On the component level, properties are configured subject to
associated components, including layout, styles and states. Most
states in ECharts components are stored in the global option and
change synchronously when a user interaction happens. After get-
ting the current global option including components states, the
view can be easily repeated in another environment. This is very
useful for debugging, replay and automated testing.

There is also a series field that contains one or more series
of datasets and their chart types. Most of the chart types have a
coordinate system, like cartesian, polar and geographic. A coordi-
nate system is also defined as a component on the top level. For a
series, there are three ways to index the corresponding coordinate
system: index, ID and name, which are common for indexing any
other component.

Fig. 2 presents an outline of a basic option.

3.2. Chart types

To make it amenable for various scenarios, ECharts provides a
variety of chart types, which may be divided into three categories,
including built-in, customized, and extended.

Specifically, built-in chart types provide a convenient way to
create charts that are most commonly used; if a specific layout or
chart type is required, which is not provided with built-in chart
types, users can use a customized series to specify the layout;
the extended mode serves as an alternative to make customized
chart types, and has more control over the rendering process and
interactions.

Generally speaking, the built-in mode is the easiest one. Oth-
erwise, if a chart type can be reused for other cases, it is rec-
ommended to be formulated as extension. Nevertheless, the cus-
tomization mode has the maximum flexibility.



D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146 139

Fig. 2. The structure of a basic option.

3.2.1. Built-in chart types
Built-in chart types include general-purposed chart types like

scatterplots, line charts, bar charts, pie charts, geomap, and candle-
stick charts.

ECharts supports 19 built-in chart types. Some of them are
shown in Fig. 1.

3.2.2. Customized chart types
With the customized chart types, users only need to concen-

trate on the rendering logic, without implementing details like
creating or releasing graphic elements, or transition animation, or
visual map. Section 4.2 presents more details on the customization
process.

Fig. 3 shows examples of customized chart types.

3.2.3. Extended chart types
ECharts provides an extension mechanism to support adding

new features (Section 4.3). Fig. 3(e) shows an example of tag cloud
extension.

3.3. Coordinates systems

In ECharts, the coordinate systems can be configured within
the declarative object model. The basic coordinate systems are
Cartesian coordinate system and Polar coordinate system. The
former can be used through the configuration xAxis and yAxis;
while the latter is specifiedwith: polar, radiusAxis and angleAxis;
Both coordinate systems can receive more than two axes, which
are identified by the index. ECharts Cartesian coordinate system
supports three kinds of axes: value, category and time.

ECharts provides two special coordinate systems: calendar and
geomap. In addition, ECharts automatically maps temporal or spa-
tial information in the data to corresponding coordinate systems.
These systems can receive arbitrary graphic elements targeted at
specific positions. That means, other charts, such as pie chart, can
be drawn within the coordinate system.

3.4. Components

Each component in ECharts contains three types of functions:
visual encoding, guide, and interaction. Corresponding modules
are integrated into different stages in the pipeline. Some compo-
nents like tooltip and markPoint focus on the guide. Some compo-
nents like dataZoom focus on the interaction. Most components
are responsible for more than two functions.

3.4.1. Visual encoding
Each chart is a combination of data-driven visual encodings,

like height in bar, position in scatterplots, area in pie, etc. Visual
encoding components are used for this purpose. Visual channels
like color, color lightness, size, glyph are composable and can be
encoded in these components from different levels of data. For
example, a legend component encodes color for different series.
Based on this, a visualMap component can modify the color light-
ness to indicate the value comparison in each series. In particular,
the alpha channel of color is used to encode the data selection
status if brushing component is included.

Most visual encoding components are interactive, like selecting
the series with legend components, filtering data in range with
visualMap components.

3.4.2. Guide
The Guide function provides descriptive information over the

visualization. Components can use labels, guide lines, glyphs to
label out the particular items or show additional information.

Most components in ECharts play the role of guide compo-
nents. Coordinate systemuses labels and ticks to show the range of
data and helps reading the value. Legend uses labels with encoded
color to show what the series is of each element in the view.
VisualMap can be used as a color bar.

3.4.3. Interactions
ECharts provides a set of interactive components to support

interactions operations like: panning, zooming, selecting. In par-
ticular, legend components can unselect unnecessary series. data-
Zoom components can filter data along a specified dimension
and brushing components can highlight selected data within the
specified area. Each interactions component triggers an event;
These events are necessary in linkingmultiple charts instances. The
properties in the events like selected data indices are useful when
performing statistics on data or showing detailed information are
needed.

4. Customization of visualization design

4.1. Interaction specification

The declarative object model supports event listeners: callback
functions that receive input events targeted at specific graphic
element. ECharts provides this feature for the entire mouse event
types and event types built by ECharts. To keep the consistency
with other callback functions in ECharts, the function receives
an object params that includes the information of the targeted
graphic element, to support data-driven interaction. The data
information includes componentType, seriesType, data and
dataIndex.

Both internal and external procedures control the interactive
behavior of the visualization view. This ensures that there is only
onemechanism that handles interactions, rather than one for each.
This mechanism works by dispatching ECharts’ built-in events to
registered event listeners when some elements are triggered, or
manipulating related data and updating visualization.



140 D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146

Fig. 3. Example of custom chart types: (a) x-range plot, (b) OHLC plot, (c) calendar, (d) polar heatmap, (e) tag cloud, (f) map drawnwith ArcGIS API. (g) shows the responsive
design of charts on PC (left) and mobile (right).

We propose an extensional architecture that focuses on data
streaming to enable direct reuse of defined interactions of existing
components (e.g. the hover event on a legend). This can reduce
the workload when developing a new chart type for EChart. This
is feasible because the handled data can be pulled into a separate
module and each component has an individual processor, making
the interactions on charts and components separate.

4.2. Customization series

In the scope of data visualization, chart types are not enumer-
able. It is always expected to be able to implement new visual
forms with the help of low-level libraries like D3.js. When creating
anew type of chart, the features providedby the existing charts and
components (e.g., zooming, tooltip, layout, visual encoding, user



D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146 141

configuration, platform compatibility) should be adopted almost
transparently. Consequently, the developers need to be proficient
in underlying libraries and take much workload to implement and
debug the logic, which is unnecessary in most cases.

We take OHLC1 chart as an example, which is a type of stock
chart used in US as shown in Fig. 3(b). To create a new chart type of
OHLC together with the feature of ‘‘zoom’’ and ‘‘tooltip’’, develop-
ers have to consider the creation of graphic elements and the layout
in a coordinate system. Moreover, a set of interactions need to be
specified: the hover interaction to show and hide ‘‘tooltip’’, the
‘‘zoom’’ interaction of data or graphic elements correspondingly,
and the animation of triggered visual elements. Moreover, new
chart types and existing chart types are usually needed to be
composed in the same coordinates.

To resolve the aforementioned issues, ECharts introduces ‘‘Cus-
tomization Series’’, with the rationale of decomposing the corre-
lated complicated features and orchestrating them in framework
level for reuse.

New chart types like OHLC chart and its variants are not pro-
vided as built-in chart types, and the graphic elements are dif-
ferent from existing chart types, which inevitably cause new im-
plementation work. But the logic of layout in coordinates, tooltip,
animation and zooming, can be reused transparently or with few
configurations.

Benefited from the data-driven stream architecture (Fig. 5),
features like ‘‘zoom’’, ‘‘visual encoding’’ and ‘‘tooltip’’ can be de-
coupled in different stages of the pipeline and be reused trans-
parently. Only the rendering stage that is to be exposed as an ex-
tension point, called renderItem, and is provided by developers,
is responsible for transforming data to the definitions of graphic
elements.

Some layout utilities are provided renderItem, such as
api.coord(datum), which canmap data points into the declared
coordinates. Some visual encoding utilities are also provided, such
as api.style() that retrieves the current visual mapping result,
where themapping is performed in the previous stage. The ‘‘zoom’’
works in a similar fashion. The transform animation of graphic
elements is adapted implicitly with the same mechanism despite
the difference of chart types.

In this way, only few lines of code are needed to create a new
chart type. An example in Section 6.1 illustrates more details.

4.3. ECharts extension

Based on the design of declarative options and extensional
architecture, ECharts allows users to import plugins written by
other users. This facilitates to create relatively complex charts or
combine ECharts with other libraries. For instance, ECharts can
work together with an online map library (e.g. ArcGIS used in
Fig. 3(g)) to create elements drawn on a map. The plugins not only
work with coordinates, but also other components such as visual
encoding (e.g. Fig. 3(f) shows an example of node-link graphwhich
colors of nodes are assigned by the plugin corresponding to the
community detection result of the graph).

Moreover, ECharts extensions also provide support for complex
chart types (Section 3.2.3), statistical computing, web framework
combination (e.g. with AngularJs or Vue), and generating ECharts
options with other programming languages (e.g. Python or R).

1 OHLC chart, https://en.wikipedia.org/wiki/Open-high-low-close_chart.

4.4. Cross-platform presentation

The cross-platform compatibility of ECharts ensures that charts
behave similarly on various platforms and support adaptations on
certain platforms when necessary.

This means that charts should have the same presentation and
interaction on different platforms, and sometimes a few adap-
tations (like layout changes) may be required. This is so-called
responsive design, which is described in Section 4.4.2.

4.4.1. Universal appearance and behavior
Charts created with ECharts are typically embedded in Web

pages, andmay be presented in differentWeb browsers, Operating
Systems, and devices. ECharts provides rendering charts with Can-
vas, SVG, and VML, which have advantages on different platforms.

It is essential for ECharts to provide a universal appearance of
the charts, and means of interactions. Besides, this job should be
done implicitly, which means that users do not need to do extra
work to ensure that. For example, it is expected that a chart looks
the same in a Google Chrome Web browser of Macintosh Operat-
ing System and in a Internet Explorer Web browser of Windows
Operating System.

For that, ECharts uses a rendering engine called ZRender to
manage rendering elements and render to different platforms in
a universal way. Please see Section 5.2 for more information.

4.4.2. Responsive design
Visualizations on mobile devices have a different design from

that on PC, as shown in Fig. 3(g). This is because mobile devices
have a small screen size.

In this case, ECharts uses a policy similar to CSSMedia Queries,2
with which users need to set rules (option) for each device

requirement (query). Fig. 4 shows an example.
The baseOption sets the overall options, so that most options

do not need to be repeated in media. And users can set the rule
according to device width, height, or aspect ratio, and set special
options for each rule respectively.

In this way, it is ensured that the least code is required for the
common parts, and special rules can be applied for certain device
sizes.

5. Architecture

5.1. Streaming architecture

A modern universal charting library is required to be compo-
nentized, extensible and interactive. To achieve this goal, ECharts
introduces a streaming architecture (Fig. 5). In a complicated vi-
sualization instance there are usually multiple visual components
cooperating with each others, responsible for performing different
types of layout, visual encoding, user interaction and rendering.
Some of those jobs are dependent on other jobs, and some may be
conflicted with others. The simplest example is that both ‘‘legend’’
components and some components dedicated in visual mapping
are able to control the appearance of chart elements dynamically.

Here, at least two issues should be considered. Firstly, for
extendibility consideration, components that have dependency
relationship should not know each other, neither the existence
of instance nor the component type. ECharts uses a universal
abstraction of data as the source and target of each process to
build the relationship of components but keep them independent.
Secondly, the priority of processes is needed to be ruled, where

2 CSS Media Queries, www.w3.org/TR/css3-mediaqueries.

https://en.wikipedia.org/wiki/Open-high-low-close%5Fchart
http://www.w3.org/TR/css3-mediaqueries


142 D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146

Fig. 4. Media Query for Responsive Design.

stagemechanism is introduced. Thus ECharts is designed as a data-
driven streaming pipeline with stages of data processing, visual
encoding and rendering, which produces graphic elements finally.
The flow is unidirectional, that is, any user interactions can only
modify the raw option or data, and run the pipeline from the
beginning. Moreover, each stage can be exposed to developers as
an extension point.

The main advantage of the designed architecture, is that both
human interaction and the interaction from program are imple-
mented in the same way. This enables programming interface to

take control of generating charts and allows users to create custom
components or extensions.

5.1.1. Progressive visualization
Visualizingmillions of data points usually takes several seconds

to transmit data from server to browser. Users always need to
wait a long time for data processing and rendering before see and
interact with the visualizations. Additionally, when performing
updates caused by user interactions, the main UI thread is blocked
and cannot react to concurrent animations and interactions. To
address this problem, we introduce incremental rendering tech-
niques based on our streaming architecture. As shown in Fig. 6,
data can be loaded and split into several small chunks. Chunks are
pushed into the pipeline one by one, and then be processed and
rendered.

When data is loading, or changed causing by user interactions,
ECharts will create tasks for operating the split data chunks. These
tasks include data filtering, visual encoding, graphic elements
creation, etc. Created tasks are sorted by their priorities and the
indexes of corresponding data chunks before being executed. Only
a limited number of tasks can be executed in each frame to ensure
that the execution time is less than 16 ms. Then the reques-
tAnimationFrame is called and remaining tasks are paused and
wait to be executed until next frame. If a new interaction happens
during the process, all running tasks are discarded and new tasks
are created.

In this way, the main UI thread of ECharts is never blocked.
Users can always interact with the visualization smoothly with
immediate feedback.

5.1.2. Multi-Thread rendering
When running all tasks in the main UI thread, Canvas drawing

must wait until the data processing and vice versa (Fig. 7). Even
after optimization, drawing on canvas still costs much time, es-
pecially when drawing complex shapes like a circle. The next task
can only start after the latest task is finished and waste much time
on I/O blocks. To further improve the performance of ECharts, we
implement amulti-threadmode that separate data processing and
canvas drawing in different threads (Fig. 8).

The web worker enables scripts to run in a background thread.
It provides a possibility ofmulti-thread rendering. Tomake ECharts
run in theworker, amock canvas is created and used in the ECharts
instance. This mock canvas records all operations, like changing
fillStyle, filling or stroking a path, drawing a text, during the ren-
dering process. These operations and corresponding parameters
are stored in a Float32Array commands list. After finishing one
task, the command list is transmitted to the main thread with

Fig. 5. The design of the data-driven architecture, where the raw data and the settings are modeled, and go through the stages of processing, layout, visual encoding, and
are rendered as graphic elements finally. User interactions or programming call can trigger the pipeline from the beginning.



D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146 143

Fig. 6. The flowchart of progressive visualization.

Fig. 7. The flowchart of the single-thread mode in ECharts.

Fig. 8. The flowchart of the multi-thread mode in ECharts.

postMessage function. The real Canvas created in themain thread
repeats the received commands and draw the graph on the screen.
Meanwhile, in the worker thread, ECharts does not have to wait
for the drawing to be finished and moves to the next task immedi-
ately.

5.2. ZRender

We additionally design and implement a 2D vector library
named ZRender for graphic elements management, renderer man-
agement and event system. It supports multiple rendering back-
ends, including Canvas, SVG and VML.

5.2.1. Graphic elements management
In ZRender, graphic elements like rectangle, circle, text and

image are stored in a tree structure, which is similar to a DOM tree.
In the tree, leaf nodes are called displayable, which can be texts,
images, paths and drawn on the canvas. Internal nodes are called
group.Group stores other groups ordisplayables as children. Each
node has scale, rotation, position properties. The transformations
of a group node are applied on its children nodes and accumulated
in a top-down manner before visualization.

There are three types of displayable in ZRender, namely, text,
image and path. Text and image basically wrap the interface of
canvas. For path, a proxy is generated to store the path commands
data in a Float32Array. This data will be used in the hit test of the
event system. It is also useful for rebuilding the path data during
the rendering process.

5.2.2. Renderer management
An operation on the elements will trigger ZRender to refresh

updates in the next frame. For each render, ZRender traverses
the tree, updates the transformations of all nodes, identifies all
displayables needed to be drawn and sends them into a render
queue. The object-wise culling is performed by using a rectangle-
based bounding box for each shown displayable.

Thereafter, the queues are sorted along z and zlevel. Dis-
playables are drawn sequentially along the order. If Canvas is
employed, zlevel determines which canvas is to be drawn. The
displayables on the same zlevel are not redrawn if they are not
changed.

5.2.3. Event system
Unlike DOM, displayables drawn in Canvas do not trigger any

mouse events. To solve this problem, we implemented an event
systemwhich supportsmouse event detection and event bubbling.
For mobile devices, we also simulate pinch events so that the view
can zoomed through two finger pinch operations.

When amousemoving event happens, ZRender traverses all the
displayables in the renderer queue, which is updated in the last
renderer, in a reversed order. For each displayable, we first do a
fast check if the mouse position (x, y) is inside its bounding box to
accelerate the hit test. For text and image displayables, the bound-
ing box test will be adequate to return the found element directly.
For path, it needs to further hit test to determine if the point is
in the actual drawn area. After finding the hit displayable, it will
throw a proper event, which can be click, mousemove, mouseover,
mouseout, and bubbles to the root node.



144 D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146

Fig. 9. The implementation of the ‘‘renderItem’’.

The entire event system including the hit test is implemented
in pure JavaScript and only depends on the displayable data. Thus
it works well on Canvas, SVG, VML or any other graphic interfaces.

6. Examples

Since the first release of ECharts 1.0 in June 2013, ECharts has
been updated to 3.0 inDec. 2017. A vast number of examples can be
found in our official website (http://echarts.baidu.com) and gallery
(http://gallery.echartsjs.com), together with basic applications in
the tutorial for users. Here we describe one kind of examples
to illustrate the usage of customization series and the extension
capabilities.

The source code of ECharts is available on GitHub: https://
github.com/ecomfe/echarts.

6.1. Customization series

As mentioned above, customization series brings the capabili-
ties of creating new chart types with few codes but still powered
by common features such as data zooming, visual encoding, tooltip.
Here we take the first customized chart in Fig. 3 as an example.

This kind of chart is usually used to present performance profile,
but is not implemented as a built-in chart type of ECharts. It can
be placed in cartesian coordinates, with the X axis representing
timeline and the Y axis listing categories. To implement this chart
type, the only work is to provide a simple function renderItem
(Fig. 9), inwhich the value of each datum is retrieved and converted
to positions in canvas based on cartesian coordinates and then
graphic elements are declared.

To fulfill the implementation, more sophisticated features are
needed. It should be noted that, zooming is required to check the
detailed information in a tiny duration. Meanwhile, animation is
needed for the smooth transitions of graphic elementswhen zoom-
ing or sliding the data window. Other features like visual encoding
and tooltip are also needed. As shown in Fig. 9, all these tasks can
be easily accomplished with few lines of codes empowered with
ECharts.

7. Discussions and comparisons

The declarative options allow users to create visual charts in a
simpleway and focus on the design of the visualization. In addition,
rich built-in components with configurable options provide the
flexible specification of interactions. The extensional architecture
enables customization for advanced users.

7.1. Discussions

To achieve the optimumperformance, ECharts leverages Canvas
which does not have the time-consuming DOM manipulations.
For that, implementing a lightweight DOM-like system is needed.
Benefited from the JIT in modern browsers, the cost of manipu-
lating the attributes on element graphic is quite small, and can
be ignored. By using a dirty flag, we can batch all updates and
redraw only once. The state change of canvas is costly because
of value parsing and validation. Accordingly, for each redraw, we
compare two adjacent displayables and only update the different
style and transform. In this way, we can prune many unnecessary
states changes in Canvas. As a result, animating 7000 rectangles in
different colors can be done in 20mson chrome62,with fullmouse
interactions like dragging and clicking.

There are somedisadvantages to use Canvas. One is thememory
cost. Memory usually matters in platforms like mobile devices.
Too many canvas instances in one page will cause the browser
out of memory and crash. Another disadvantage is that a large-
sized canvas costs much time for the browser to do compositing
with backgrounds, leading to an unsatisfying experience when
user scrolling the page with many charts, especially on the mobile
devices. To address this bottleneck, ECharts implements an SVG
backend for the scenarios of drawing many charts on mobile de-
vices.

7.2. Comparisons

In this section, we compare ECharts with other existing chart
libraries, including HighCharts, Chart.js, and C3.

Four libraries support common charts, such as line charts, bar
charts and pie charts. HighCharts uses declarative options and
design of data series. However, the items of options and structures
of the input data used in HighCharts are highly constrained. In
contrast, ECharts provides amore flexibleway to construct options
by assembling components in need and to freely specify data
attributes using encode keyword. Although HighCharts can also
specify event listeners and import plugins, its expandability is
limited due to its constrained options. For instance, HighCharts
cannot work with online map libraries while ECharts can seam-
lessly integrate with online map like Baidu map. Chart.js and C3
do not offer the customization of visual design, and thus cannot
generate complex visualizations.

It should be noted that, the extensional architecture of ECharts,
including components and the further specification of event lis-
teners, provides a flexible way to support customization of chart
design and user interaction. These features are not supported by
HighCharts, Chart.js and C3.

Benefited by the ZRender engine, ECharts can render charts
with HTML5 canvas while remaining DOM-like manipulations.
This enables a high performance as a large number of SVG elements
on the web page is time- and memory-consuming. Chart.js also
supports rendering with canvas, while HighCharts and C3 can only
manipulate SVG.

Table 1 summarizes the differences between ECharts and other
three libraries.

http://echarts.baidu.com
http://gallery.echartsjs.com
https://github.com/ecomfe/echarts
https://github.com/ecomfe/echarts
https://github.com/ecomfe/echarts


D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146 145

Fig. 10. Comparisons among ECharts, HighCharts, Chart.js, and C3 concerning the initialization time and animation framerate for different chart types.

Table 1
Comparison of ECharts and HightCharts, Chart.js, and C3.

Library Extended charts Custom interactions Canvas

HighCharts ✗ ✗ ✗

Chart.js ✗ ✗ ✓

C3 ✗ ✗ ✗

ECharts ✓ ✓ ✓

7.3. Performance comparison

In this section, we compare the performance of ECharts with
C3.js, HighCharts, and Chart.js, which are widely employed chart-
ing library. The metrics include chart initialization time and ani-
mation framerate.

The initialization time is the duration from the creation to the
rendering accomplishment of a chart. Fully rendered means all
graphic elements have been drawn on the screen and users can
interact with the page. ECharts draws the elements directly after
setOption, but Chart.js runs it in the next tick. Thus we measure
the ending time in a setTimeout operation and make sure the
draw is actually finished. Because SVG in chrome is rendered
asynchronously, we cannot get the accurate finish time, and have
to run this part in Firefox Quantum.

The animation framerate indicates the performance of redraw-
ing charts. This performance is essential for smooth user experi-
ences during interactions. We enable transition animations and
update the data in every 5 s. The transition duration is set to 5 s.
Then we record the average FPS with Firefox Quantum develop-
ment tool.

For each performance metric, we test the performance of four
libraries when generating different types of charts, including line
chart, scatterplots, and bar charts, at different sizes of datasets.

Fig. 10 reports the performance of four tools. ECharts and
Chart.js have shorter initialization time compared to HighCharts
and C3. This may caused by the heavy workload of creating the
DOM tree of SVG elements. In the framerate tests, ECharts also
performs well in all three types of charts. Benefited from using
canvas, Chart.js has relatively high performance, while C3 has the
lowest frame rates.

The results of performance tests show that ECharts compares
favorably with other three tools in terms of performance.

8. Impact

We released the ECharts official version 1.0.0 on June 30, 2013,
and has iterated 63 versions up to now. Till Jan. 2018, there are
more than 22,000 star counts and over 1700 related projects in the
GitHub,making ECharts the third in theGitHub visualization tab. In
themeantime, there are nearly 7000 daily Baidu index3 and 90,000
weekly active developers, and four thousand daily downloads.

To our best knowledge, in the web front-end industry of China,
ECharts acquires the recognition rate as high as 90% and the uti-
lization rate as high as 74%. This means that ECharts is the most
popular visualization toolkit in China. It has been employed by 90%
Baidu’s internal software product, and used by external agencies,
such as the Chinese Foreign Ministry, China National Bureau of
Statistics, China National Patent Offices, Alibaba, Tencent, Huawei
and Lenovo.

In addition, universities and research institutions widely lever-
age ECharts for studying, research and development. We have
made a thorough investigation and concluded that almost all
universities that have visualization or statistics courses employ
ECharts as basic visualization toolkits. Representatives include
ZhejiangUniversity, BeijingUniversity,WuhanUniversity and CAS.

Besides being well known in China, we have numerous foreign
users, some ofwhich even contributed code to online ECharts com-
munity. Some international users gave us constructive feedback,
like:

1. ‘‘Went with ECharts 3 at the end, it has almost all the
functionality I need’’

2. ‘‘This library looks amazingly powerful and complete’’
3. ‘‘It looks amazing and easy to use for charts’’

9. Conclusion

We introduce ECharts, an efficient web-based framework for
rapid construction of cross-platform visualizations. ECharts is de-
signed to provide easy-to-use visual specification that allows users

3 Baidu index of ECharts, https://zhishu.baidu.com/?tpl=trend{&}word=ECharts.

https://zhishu.baidu.com/%3Ftpl%3Dtrend%26word%3DECharts


146 D. Li, H. Mei, Y. Shen et al. / Visual Informatics 2 (2018) 136–146

who do not have programming skills to construct web-based vi-
sualizations. Users are allowed to freely configure components,
styles, data and interactions through a declarative option. Such de-
sign reduces the workloads to take control of the constructing pro-
cess and visual structures. Users can further specify visual effects,
including novel visual designs and interactions, by utilizing well-
designed interfaces. ECharts is built on a high-performance ren-
dering and management system of HTML5 canvas, called ZRender.
We present examples to illustrate the possibilities of our design,
performance benchmarks of graph drawing, and the usability in
real applications.

References

Bostock, M., Heer, J., 2009. Protovis: A graphical toolkit for visualization. IEEE Trans.
Vis. Comput. Graphics 15 (6), 1121–1128.

Bostock, M., Ogievetsky, V., Heer, J., 2011. D3 data-driven documents. IEEE Trans.
Vis. Comput. Graphics 17 (12), 2301–2309.

Fekete, J.D., 2004. The infovis toolkit. In: IEEE Symposium on Information Visualiza-
tion, pp. 167–174.

Flare, http://flare.prefuse.org/. (Last Accessed: Dec. 2017).
ggvis 0.4 overview, https://ggvis.rstudio.com/. (Last Accessed: Dec. 2017).
Grammel, L., Tory, M., Storey, M.-A., 2010. How information visualization novices

construct visualizations. IEEE Trans. Vis. Comput. Graphics 16 (6), 943–952.
Heer, J., Bostock, M., 2010. Declarative language design for interactive visualization.

IEEE Trans. Vis. Comput. Graphics 16 (6), 1149–1156.
Heer, J., Card, S.K., Landay, J.A., 2005. prefuse: A toolkit for interactive information

visualization. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’05. ACM, New York, NY, USA, pp. 421–430.

Heer, J., Van Ham, F., Carpendale, S., Weaver, C., Isenberg, P., 2008. Creation
and collaboration: Engaging new audiences for information visualization.
In: Information Visualization. Springer, pp. 92–133.

Ichikawa, T., Jungert, E., Korfhage, R.R., 2013. Visual Languages and Applications.
Springer Science & Business Media.

JavaScript InfoVis Toolkit, http://philogb.github.io/jit/, last Accessed: Dec. 2017.
Kim, N.W., Schweickart, E., Liu, Z., Dontcheva, M., Li, W., Popovic, J., Pfister, H., 2017.

Data-driven guides: Supporting expressive design for information graphics.
IEEE Trans. Vis. Comput. Graphics 23 (1), 491–500.

Mei, H., Ma, Y., Wei, Y., Chen, W., 2018. Design space of construction tools for
information visualization: A survey. J. Vis. Lang. Comput. 44, 120–132.

Méndez, G.G., Nacenta, M.A., Vandenheste, S., 2016. iVoLVER: Interactive visual
language for visualization extraction and reconstruction. In: Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, CHI ’16. ACM,
pp. 4073–4085.

Microsoft Excel, https://products.office.com/excel/. (Last Accessed: Dec. 2017).
Mwalongo, F., Krone, M., Reina, G., Ertl, T., 2016. State-of-the-art report in web-

based visualization. Comput. Graph. Forum 35, 553–575.
Processing, http://processing.org. (Last Accessed: Dec. 2017).
Raphaël—JavaScript Library, http://dmitrybaranovskiy.github.io/raphael/. (Last Ac-

cessed: Dec. 2017).
Reas, C., Fry, B., 2003. Processing: A learning environment for creating interactive

web graphics. In: ACM SIGGRAPH 2003 Web Graphics. ACM, pp. 1–1.
Reas, C., Fry, B., 2005. Processing.org: A networked context for learning computer

programming. In: ACM SIGGRAPH 2005 Web Program. ACM, p. 14.
Ren, D., Höllerer, T., Yuan, X., 2014. iVisDesigner: Expressive interactive design of

information visualizations. IEEE Trans. Vis. Comput. Graphics 20 (12), 2092–
2101.

Satyanarayan, A., Heer, J., 2014. Lyra: An interactive visualization design environ-
ment. Comput. Graph. Forum 33, 351–360.

Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J., 2017. Vega-Lite: A
grammar of interactive graphics. IEEE Trans. Vis. Comput. Graphics 23 (1), 341–
350.

Satyanarayan, A., Russell, R., Hoffswell, J., Heer, J., 2016. Reactive vega: A streaming
dataflow architecture for declarative interactive visualization. IEEE Trans. Vis.
Comput. Graphics 22 (1), 659–668.

Satyanarayan, A.,Wongsuphasawat, K., Heer, J., 2014. Declarative interaction design
for data visualization. In: Proceedings of the 27th Annual ACM Symposium on
User Interface Software and Technology, UIST ’14. ACM, New York, NY, USA,
pp. 669–678.

Stolte, C., Tang, D., Hanrahan, P., 2002. Polaris: A system for query, analysis, and
visualization ofmultidimensional relational databases. IEEE Trans. Vis. Comput.
Graphics 8 (1), 52–65.

Tableau software, https://www.tableau.com/, (Last Accessed: Dec. 2017).
Viegas, F.B., Wattenberg, M., Van Ham, F., Kriss, J., McKeon, M., 2007. ManyEyes: a

site for visualization at Internet scale. IEEE Trans. Vis. Comput. Graphics 13 (6),
1121–1128.

Wang, X.-M., Zhang, T.-Y.,Ma, Y.-X., Xia, J., Chen,W., 2016. A survey of visual analytic
pipelines. J. Comput. Sci. Tech. 31 (4), 787–804.

Weaver, C., 2004. Building highly-coordinated visualizations in improvise. In: IEEE
Symposium on Information Visualization, pp. 159–166.

Wickham, H., 2009. Ggplot2: Elegant Graphics for Data Analysis. Springer.
Wickham, H., 2010. A layered grammar of graphics. J. Comput. Graph. Statist. 19 (1),

3–28.
Wilkinson, L., 2005. The Grammar of Graphics. Springer.

http://refhub.elsevier.com/S2468-502X(18)30006-8/sb1
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb1
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb1
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb1
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb1
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb1
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb1
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb1
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb2
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb2
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb2
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb2
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb2
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb2
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb2
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb2
http://flare.prefuse.org/
https://ggvis.rstudio.com/
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb6
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb7
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb7
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb7
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb7
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb7
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb7
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb7
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb7
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb8
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb9
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb10
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb10
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb10
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb10
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb10
http://philogb.github.io/jit/
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb12
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb13
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb14
https://products.office.com/excel/
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb16
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb16
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb16
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb16
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb16
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb16
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb16
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb16
http://processing.org
http://dmitrybaranovskiy.github.io/raphael/
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb19
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb20
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb20
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb20
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb20
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb20
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb20
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb20
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb21
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb22
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb22
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb22
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb22
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb22
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb22
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb22
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb22
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb23
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb24
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb25
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb26
https://www.tableau.com/
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb28
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb29
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb31
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb32
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb33
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb33
http://refhub.elsevier.com/S2468-502X(18)30006-8/sb33

	ECharts: A declarative framework for rapid construction of web-based visualization
	Introduction
	Related work
	Grammars of visualization
	Graphics libraries
	Customization of visual design

	Declarative visualization design
	Declarative options
	Chart types
	Built-in chart types
	Customized chart types
	Extended chart types

	Coordinates systems
	Components
	Visual encoding
	Guide
	Interactions


	Customization of visualization design
	Interaction specification
	Customization series
	ECharts extension
	Cross-platform presentation
	Universal appearance and behavior
	Responsive design


	Architecture
	Streaming architecture
	Progressive visualization
	Multi-Thread rendering

	ZRender
	Graphic elements management
	Renderer management
	Event system


	Examples
	Customization series

	Discussions and comparisons
	Discussions
	Comparisons
	Performance comparison

	Impact
	Conclusion
	References


